
Environmental Health Perspectives  •  volume 122 | number 4 | April 2014	 397

ResearchAll EHP content is accessible to individuals with disabilities. A fully accessible (Section 508–compliant) 
HTML version of this article is available at http://dx.doi.org/10.1289/ehp.1307049. 

Introduction
Long-term exposure to ambient fine par-
ticulate matter (≤  2.5  μg/m3 in aerody-
namic diameter; PM2.5) is associated with 
increased mortality from nonaccidental and 
cause-specific diseases (Brook et al. 2010; 
Committee on the Medical Effects of Air 
Pollutants 2009; Cooke et al. 2007; Krewski 
et al. 2009). Epidemiologic cohort studies, 
conducted largely in the United States, have 
reported this association for annual ambient 
average concentrations from approximately 5 
to 30 μg/m3, although definitive knowledge 
of which specific sources or characteristics of 
PM2.5 are responsible for these associations 

is currently lacking [U.S. Environmental 
Protection Agency (EPA) 2009; World 
Heal th Organizat ion (WHO) 2006, 
2007]. No epidemiologic study, however, 
has estimated the association of long-term 
exposure to direct measurements of PM2.5 
with mortality from chronic cardiovascular 
and respiratory disease at the higher ambi-
ent exposures common in cities and other 
areas in Asia and other developing countries 
where annual average exposures can exceed 
100 μg/m3 (Brauer et al. 2012; Health Effects 
Institute 2010). As a result, estimates of dis-
ease burden attributable to ambient air pol-
lution in these locations have had to be based 

on extrapolations of the results of epidemio-
logic studies from locations with lower ambi-
ent PM2.5 exposures (Anenberg et al. 2010; 
Cohen et al. 2004; Evans et al. 2013).

Previous efforts to estimate global bur-
den from exposure to ambient air pollution 
(AAP) in the form of PM2.5 postulated risk 
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Background: Estimating the burden of disease attributable to long-term exposure to fine 
particulate matter (PM2.5) in ambient air requires knowledge of both the shape and magnitude 
of the relative risk (RR) function. However, adequate direct evidence to identify the shape of 
the mortality RR functions at the high ambient concentrations observed in many places in the 
world is lacking.

Objective: We developed RR functions over the entire global exposure range for causes of mortal-
ity in adults: ischemic heart disease (IHD), cerebrovascular disease (stroke), chronic obstructive pul-
monary disease (COPD), and lung cancer (LC). We also developed RR functions for the incidence 
of acute lower respiratory infection (ALRI) that can be used to estimate mortality and lost-years of 
healthy life in children < 5 years of age.

Methods: We fit an integrated exposure–response (IER) model by integrating available RR infor-
mation from studies of ambient air pollution (AAP), second hand tobacco smoke, household solid 
cooking fuel, and active smoking (AS). AS exposures were converted to estimated annual PM2.5 
exposure equivalents using inhaled doses of particle mass. We derived population attributable frac-
tions (PAFs) for every country based on estimated worldwide ambient PM2.5 concentrations.

Results: The IER model was a superior predictor of RR compared with seven other forms previ-
ously used in burden assessments. The percent PAF attributable to AAP exposure varied among 
countries from 2 to 41 for IHD, 1 to 43 for stroke, < 1 to 21 for COPD, < 1 to 25 for LC, and 
< 1 to 38 for ALRI.

Conclusions: We developed a fine particulate mass–based RR model that covered the global range 
of exposure by integrating RR information from different combustion types that generate emissions 
of particulate matter. The model can be updated as new RR information becomes available.
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functions for cardiopulmonary mortality as 
linearly increasing in relative risk (RR) from 
7.5 to 50 μg/m3, with no further change in 
RR at higher concentrations (Cohen et al. 
2004). Sensitivity analyses included a model 
in which RR varied as the logarithm of 
concentration, producing a more gradual 
diminution of the marginal increase in RR 
than the base case model. The logarithmic 
model was subsequently recommended by 
the WHO for use in air pollution burden of 
disease estimates at the national level (Ostro 
2004). The coefficients of these models 
were based on information from a single 
U.S. cohort study—the American Cancer 
Society Cancer Prevention Study II (CPS-II) 
(Krewski et  al. 2009; Pope et  al. 2002)—
with exposure assignments of < 22 μg/m3. 
The form of the models used for global bur-
den assessment was motivated largely by 
the concern that linear extrapolation using 
these coefficients would produce unrealisti-
cally large estimates of RR compared with 
other known PM2.5-related mortality risks 
such as active smoking (AS) and exposure to 
secondhand tobacco smoke (SHS) (Cohen 
et al. 2004; Ostro 2004). These RR models 
were also employed in more recent estimates 
of global mortality associated with ambient 
PM2.5 concentrations (Anenberg et al. 2010; 
Evans et al. 2013).

Absent empirical epidemiologic evidence 
on the magnitude of the association with 
mortality at high exposures of PM2.5 in ambi-
ent environments, Pope et al. (2011b) sug-
gested that the integration of epidemiologic 
evidence on cardiovascular and lung cancer 
(LC) mortality RR from disparate types of 
PM2.5 exposure such as AAP, SHS, and AS, 
may provide insight into the shape of the 
exposure–response relation over a much wider 
range of exposures.

Here we present the methodology used to 
estimate the population attributable fraction 
(PAF) from exposure to ambient PM2.5 in the 
Global Burden of Diseases, Injuries, and Risk 
Factors Study 2010 (the GBD 2010 project) 
(Lim et al. 2012). We selected a mathematical 
form of the RR function with a PM2.5 con-
centration that could describe the observed 
relationships between RR and exposure for 
the five outcomes examined. We fit this 
model for cause-specific adult mortality for 
four causes of death—ischemic heart disease 
(IHD), stroke, chronic obstructive pulmo-
nary disease (COPD), and LC—using RR 
information from epidemiologic studies of 
long-term exposure to particulate matter not 
only from AAP, SHS, and AS, but also from 
studies of household air pollution from solid 
cookfuel (household air pollution; HAP). We 
used these models to estimate the percentage 
of PAF associated with exposure to ambient 
PM2.5 for each of the 187 countries included 

in the GBD 2010 project. We identified a 
specific model form that best predicts source-
specific RR for all four causes of death. In 
addition, we examined the relationship 
between PM2.5 exposure and the incidence 
of acute lower respiratory infection (ALRI) in 
infants, another health outcome considered in 
the GBD 2010 project. Because infants and 
young children are non(active)-smokers, the 
largest PM2.5 exposures considered for ALRI 
are from HAP.

Methods
Underlying assumptions. The model we 
propose in here was based on the following 
underlying assumptions:
•	Exposure to PM2.5 from diverse combustion 

sources is associated with increased mor-
tality from IHD, stroke, COPD, and LC 
and with increased incidence of ALRI. This 
assumption is based on systematic review 
of the available epidemiologic literature 
conducted by the GBD 2010 Ambient Air 
Pollution Expert Group as part of the GBD 
2010 project (Lim et al. 2012).

•	The observed RRs from AAP, SHS, HAP, 
and AS are a function of PM2.5 mass 
inhaled concentration across all combus-
tion particle sources (Smith 1987). The 
toxicity of PM2.5 is assumed to differ only 
with regard to inhaled mass (exposure) and 
not with PM2.5 composition. The toxicity 
of emissions from different combustion 
sources may well differ, but current knowl-
edge does not allow definitive and quanti-
fiable conclusions regarding their relative 
toxicity and little is known about inter-
national variation in source contributions 
around the world (Stanek et al. 2011; U.S. 
EPA 2009; WHO 2006).

•	The relation between PM2.5 exposure 
and excess mortality RR is not necessarily 
restricted to a linear function over the range 
of human exposure to PM2.5 from diverse 
sources (Pope et al. 2009, 2011b).

•	The RR of mortality from chronic disease 
experienced by people exposed to AAP, 
SHS, HAP, and AS is a function of long-
term, cumulative exposure quantified in 
terms of daily average exposure concentra-
tion and does not depend on the tempo-
ral pattern of exposure (Pope et al. 2011a, 
2011b). This assumption is required because 
the temporal nature of PM2.5 exposure dif-
fers for AAP, SHS, HAP, and AS.

•	The RR associated with each type of expo-
sure does not depend on the other types 
of exposure. That is, we are assuming no 
interaction among the different exposure 
types for any cause of mortality. We are 
aware of no empirical epidemiologic evi-
dence that tests that assumption; however, 
the direct epidemiologic evidence from 
the cohort studies we used to estimate the 

burden attributable to ambient PM2.5 shows 
that active cigarette smokers are also affected 
adversely by exposure to ambient PM2.5, and 
these studies do not provide support for sig-
nificant heterogeneity of the relative excess 
AAP RR across smoking categories.

Model form. We selected a mathemati-
cal form of an integrated exposure–response 
(IER) model that could describe several pat-
terns in RR thought to be a priori applicable 
to exposure–response models. We wanted the 
IER to be able to take shapes similar to models 
previously used for burden assessment, such as 
linear and log-linear (Cohen et al. 2004) and 
a power function (Pope et al. 2009, 2011b). 
In addition to these shapes, we also required 
the IER to have a property that it flattens out 
at high exposures, consistent with evidence of 
the relationship between IHD mortality and 
smoking intensity (Pope et al. 2009).

The form must equal 1 when PM2.5 
values are below some concentration that rep-
resents a counterfactual low exposure where 
below this level there is no excess risk. We 
also desired a model that increases mono
tonically with increasing PM2.5 exposure con-
centration and could take a variety of shapes, 
such as near linear, sublinear, and supralinear. 
Our IER model has the following form:

for z < zcf ,  
RRIER(z) = 1

for z ≥ zcf ,  
RRIER(z) = 1 + α {1 – exp[– γ (z – zcf)δ]},	 [1]

where z is the exposure to PM2.5 in micro-
grams per meter cubed and zcf is the counter
factual concentration below which we assumed 
there is no additional risk. For very large z, 
RRIER approximates 1 + α. We included a 
power of PM2.5, δ, to predict risk over a very 
large range of concentrations. Further, RRIER 
(zcf + 1) approximates 1 + αγ. Thus, γ = [RRIER 
(zcf + 1) – 1]/[RRIER (∞) – 1] can be inter-
preted as the ratio of the RR at low-to-high 
exposures. We term our model an “integrated-
exposure response” model because its develop-
ment requires the integration of exposures to 
PM2.5 from different combustion types (i.e., 
AAP, SHS, HAP, and AS).

In formulating our RR model, we relied 
on information on the RR of mortality at 
specified PM2.5 exposure concentrations from 
the available literature. Suppose we have a 
set of RR estimates { r̂1

(s),…,r̂Ks
(s), s = 1,…,S} 

and corresponding confidence intervals (CIs) 
based on PM2.5 concentrations {z1

(s),…,zKs
(s), 

s = 1,…,S}, for S different types of PM2.5 
sources, where Ks is the number of RR esti-
mates available from for source type S. The 
unknown parameters (α, γ, δ) are estimated 
by nonlinear regression methods. We then 
weighted the RR estimates by the inverse of 
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the variance estimate of the logarithm of the 
RR in order to reflect the uncertainties in 
each estimate.

We compared the IER model  to 
seven other models that have been previ-
ously suggested for burden assessment. 
These include an RR model that is linear in 
exposure throughout the global concentra-
tion range (Lin), a model that is linear up 
to 30 μg/m3 and constant above 30 μg/m3 
(Lin30), a model that is linear up to 50 μg/m3 
and constant above 50 μg/m3 (Lin50), and 
a model that is a function of the logarithm 
of exposure (Log). These models were used 
in a previous assessment of global burden of 
disease due to AAP exposure (Cohen et al. 
2004). We also postulated a model in which 
we added an unknown parameter to concen-
tration in the Log model to allow more flex-
ibility in fitting the type-specific RRs (Log2). 
The sixth model examined related RR to a 
power of exposure as proposed by Pope et al. 
(2009, 2011b), with the seventh model 
equivalent to the IER with δ = 1(Exp). For 
the mathematical forms of the models, see 
the Supplemental Material (Sensitivity of RRs 
and PAFs to Model Form, pp. 9–11). We 
then calculated both the Akaike and Bayesian 
information criteria (AIC, BIC) for each of 
the eight models examined and five health 
outcomes as measures of goodness of fit.

The method of constructing uncertainty 
bounds on model predictions is described 
in detail in the Supplemental Material 
(Characterizing Uncertainty, pp.  28–29). 
Briefly, we simulated 1,000 sets of source 
type–specific RRs based on their point esti-
mates and CIs and fit the IER model to 
these simulated values, obtaining 1,000 sets 
of parameter estimates of (α,γ,δ). Using 
these parameter estimates, we then gener-
ated 1,000 IER functions over the global 
concentration range. Estimates of uncertainty 
were also generated for the PM2.5 concentra-
tions. Uncertainty in the PAFs is a function 
of the uncertainty in the IER model predic-
tions and the exposure estimates and is deter-
mined by simulation methods as described in 
the Supplemental Material (Characterizing 
Uncertainty, pp. 28–29).

Specifics of the selection of source type–
specific RR and PM2.5 exposure for each 
type are described below for the four mor-
tality outcomes. The logarithm of the RR 
per micrograms per meter cubed, its SE, 
and associated PM2.5 concentration for the 
five outcomes is given by type of PM2.5 in 
Supplemental Material, Table S1.

AAP. To fit the risk models, we used 
cause-specific mortality AAP RR estimates 
from available published cohort studies. 
We evaluated each RR estimate at its study-
specific PM2.5 mean concentration minus 
a less-polluted counterfactual level (Lim 

et al. 2012). Most RRs were obtained from 
published reports; however, in some cases 
new analyses were conducted for the pres-
ent study. These estimates are identified in 
Supplemental Material, Table S1. We had 
eight studies reporting RR estimates for IHD 
mortality, five for stroke mortality, three for 
COPD mortality, and four for LC mortality.

SHS. We selected RRs for both IHD (8 
studies reporting separate estimates for males 
and females) and LC (46 studies) mortality 
from studies included in the U.S. Surgeon 
General’s Report, The Health Consequences of 
Involuntary Exposure to Tobacco Smoke (Office 
on Smoking and Health 2006). We associated 
the RR of death due to SHS exposure with an 
equivalent ambient PM2.5 concentration of 
20 μg/m3 for low-to-moderate SHS exposure 
and 50 μg/m3 for moderate-to-high exposure 
based on the analysis of Pope et al. (2009) for 
IHD mortality because RRs were reported by 
the Office on Smoking and Health (2006) for 
these two descriptive exposure categories. We 
assigned a concentration of 35 μg/m3 based 
on the midpoint of the range 20–50 μg/m3 for 
LC mortality because no specific description 
of the level of SHS exposure was provided by 
the Office on Smoking and Health (2006). 
We selected 29 RRs from studies examined 
by Oono et al. (2011) for stroke mortality on 
the basis of prospective cohort studies with an 
associated PM2.5 concentration of 35 μg/m3. 
There was insufficient evidence to estimate a 
RR due to SHS exposure for COPD mortal-
ity. We assumed that the SHS RRs are associ-
ated with a change in PM2.5 exposure based 
on nonsmoking subjects living with a smoker 
compared with those not living with a smoker. 
We have not incorporated other potential 
sources of PM2.5 exposure for these study 
subjects, such as from indoor sources, near-
roadway conditions, or occupational exposures 
by subject.

AS. Following Pope et al. (2009, 2011b), 
we estimated the RR of each of the four 
causes of death for current cigarettes smoked 
per day compared with never smokers from 
the CPS-II. We estimated the RR and 
95% CIs associated with 10 cigarettes-per-day 
groupings: 1–3, 4–7, 8–12, 13–17, 18–22, 
23–27, 28–32, 33–37, 38–42, and >  42 
cigarettes/day. We estimated that smoking 
a single cigarette was equivalent to breath-
ing a daily ambient concentration of PM2.5 
of 667 μg/m3, assuming an average breath-
ing rate of 18 m3/day and an inhaled dose 
of 12,000 μg PM2.5 mass per cigarette (Pope 
et al. 2009). We then estimated the equiva-
lent ambient concentration of PM2.5 by 
multiplying the average cigarettes/day smoked 
in each interval by 667 μg/m3. The shape of 
the curve fitted by Pope et al. (2009, 2011b) 
was not sensitive to the estimate of equivalent 
ambient PM2.5 concentrations for AS.

HAP. Smith et al. (2014) conducted a 
meta-analysis of studies examining COPD 
and LC incidence rates among men and 
women exposed to air pollution from burn-
ing coal or biomass for cooking. There were 
no studies relating IHD or stroke mortality 
or incidence to HAP at the time of the GBD 
2010 project analyses, and thus this PM2.5 
type cannot contribute to the fit of our RR 
function. The equivalent long-term PM2.5 
exposure from HAP was estimated for study 
subjects using coal or biomass for cooking 
(Balakrishnan et al. 2013) and for those study 
subjects using cleaner fuels to integrate this 
information into our IER risk model. PM2.5 
exposure estimates for women (300 μg/m3) 
were higher than for men (200 μg/m3). For 
the COPD meta-analysis, the relevant female 
control group was assumed to be using a mix-
ture of gas and chimney stoves (an estimated 
PM2.5 exposure of 100 μg/m3). The PM2.5 
exposure for males was estimated to be 65% 
of that for females (65 μg/m3). For LC, the 
female control group was assumed to be using 
only gas stoves with an estimated PM2.5 expo-
sure of 70 μg/m3. For males, the exposure was 
again assumed to be 65% of females, resulting 
in an equivalent exposure of 45.5 μg/m3. The 
meta-analytic summary risk estimate for male 
COPD incidence in association with HAP 
PM2.5 was 1.90 (95% CI: 1.56, 2.32) and 
for females was 2.70 (95% CI: 1.95, 3.75). 
For LC incidence among males, the summary 
risk estimate was 1.26 (95% CI: 1.04, 1.52) 
and among females was 1.81 (95%  CI: 
1.07, 3.06).

The lower exposure estimates in the HAP 
studies are substantially higher than counter
factual exposure due to the nearby use of 
less clean fuels; therefore, these RRs are not 
directly comparable to those obtained from 
AAP, SHS, or AS types compared with either 
the counterfactual (i.e., AAP) or a 0-μg/m3 
exposure (i.e., SHS, AS). This information 
was included in the curve-fitting process by 
equating the observed RRs to the ratio of the 
IER model evaluated at the respective two 
PM2.5 concentrations.

The HAP studies estimated effects on 
incidence rather than mortality. For building 
the IER, we assumed that the RRs of mortal-
ity and incidence are equal.

Age-modification risk models for IHD 
and stroke mortality. Epidemiologic studies of 
risk factors for both IHD and stroke indicate 
that the RR declines with the logarithm of 
age, reaching 1 between 100 and 120 years 
of age (Singh et al. 2013). We thus modified 
the type-specific RR for both IHD and stroke 
mortality using a linear regression model of the 
logarithm of the median age at death for each 
study with the intercept equal to 1 at 110 years 
of age. The slope of the regression line was 
estimated from a meta-analysis of several risk 
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factors (Singh et al. 2013). We applied this 
age-modification to the RRs and fit the IER 
model for each age group separately.

Selecting the counterfactual exposure. For 
each risk factor examined in the GBD 2010 
project (Lim et al. 2012), the distribution 
of exposure was compared with an alterna-
tive (counterfactual) distribution termed the 
theoretical-minimum-risk exposure distribu-
tion (TMRED). For AAP, zero exposure is 
not a practical counterfactual level because it 
is impossible to achieve even in pristine envi-
ronments (Brauer et al. 2012). Furthermore, 
the lowest level of exposure to PM2.5 that is 
deemed beneficial has not been clearly identi-
fied. Defining the TMRED was based on two 
criteria (Lim et al. 2012): a) the availability 
of convincing evidence from epidemiologic 
studies that support a continuous reduction 
in risk of disease to the chosen distribution, 
and b)  a distribution that is theoretically 
possible at the population level.

Lim et al. (2012) suggested that a positive 
counterfactual concentration be used. Their 
counterfactual concentration is bounded by 
the minimum concentrations observed in the 
studies used to estimate risk and some low 
percentile of the PM2.5 distribution. There is 
clearly no evidence of an association below 
observed levels, and it is impractical to esti-
mate the shape of the curve at the extremes of 
the exposure distribution. Lim et al. (2012) 
suggested that the fifth percentile be used 
and that the lower and upper bounds on the 
counterfactual concentration be determined 
by the corresponding minimum and fifth 
percentiles, respectively, of the AAP PM2.5 
exposure distribution for the CPS II cohort 
(Krewski et al. 2009), the largest cohort study 
of air pollution. The minimum was 5.8 μg/m3 
and the fifth percentile was 8.8  μg/m3. 
Uncertainty in the counterfactual concentra-
tion was modeled as a uniform distribution 
between the minimum and fifth percentile.

Estimation of PAF. We estimated the PAF 
associated with ambient PM2.5 exposure for 
all 187 countries separately for 2005. We first 
estimated surface PM2.5 concentrations on 
a 0.1° × 0.1° grid for the globe using a com-
bination of remote sensing and atmospheric 
models calibrated to ground monitoring 
data (Brauer et al. 2012). For each grid cell 
within a given country, we estimated the RR 
based on the IER model at the estimated 
PM2.5 concentration. We then constructed 
a population-weighted average RR for each 
country using the corresponding population 
count 0.1° × 0.1° grid cell (Brauer et al. 2012). 
Both the gridded PM2.5 and population values 
can be obtained from Brauer et al. (2012). The 
country-specific PAF = 1 – 1/WRRIER, where 
WRRIER is the population-weighted average of 
the RRIER values at each PM2.5 grid cell within 
the country.

IER model for ALRI. Mehta et al. (2013) 
reviewed the evidence for an association 
between exposure to ambient PM2.5 and 
ALRI. Four cohort studies were deemed 
appropriate to include in an IER model 
(Mehta et al. 2013). We included 23 studies 
of parental SHS and ALRI reported by the 
Office on Smoking and Health (2006) with 
each study-specific odds ratio (OR) assigned 
a PM2.5-equivalent ambient exposure of 
50 μg/m3, assuming a moderate-to-high level 
of exposure. Smith et al. (2011) examined 
the relationship between exposure to carbon 
monoxide (CO) from the burning of solid 
biomass for heating and cooking and the inci-
dence of ALRI in Guatemala and reported 
incidence rates by decile average of CO per-
sonal exposures. These decile CO averages 
were converted to PM2.5 concentrations using 
the following equation: 

PM2.5(mg/m–3) = 0.10(0.093, 0.12) × CO(mg/m–3)  
	 + 0.067 (0.0069, 0.13),	 [2]

with 95% CIs displayed in parenthesis 
(Northcross et al. 2010). This equation had 
good predictive power (R2 = 0.76).

Incidence rates, I(zi), corresponding to 
the 10 decile values of PM2.5, denoted by zi 
for 1 = 1,…10, can be compared with the risk 
model by taking the ratio of incidence rates 
for all unique pairs of PM2.5 deciles, a total 

of 45 pairs, and equating them to the ratio of 
the corresponding risk model evaluated at the 
appropriate decile average. That is,

RRALRI(zi, zj) = I(zi)/I(zj)  
	 = [1 + α{1 – exp[–γ (zi – zcf)δ]}] 
	   ÷ [1 + α{1 – exp[–γ (zj – zcf)δ]}]	 [3]

for all 45 unique pairs of concentrations 
(zi, zj), ∀i > j = 1,…10. The 45 incidence rate 
ratios were combined with the 4 AAP cohort 
study ORs and the 23 SHS ORs in order to 
fit the IER model for ALRI. We assumed the 
same counterfactual uncertainty distribution 
as with the mortality IER models.

Results
The average of the RRIER predictions among 
the simulations are displayed for the four causes 
of death in Figure 1 in addition to the 95% CI 
and the type-specific RR estimates and cor-
responding 95% CIs used to fit the curves. The 
HAP RRs for COPD and LC are presented for 
males and females in Figure 1 as pink-shaded 
boxes with the height of each box represent-
ing the uncertainty in the RR estimates and 
the width representing the exposure contrast at 
which the RRs was assumed to pertain. Each 
box is centered at the RR estimate and the mid-
point of the two exposure values. This alternate 
depiction of the HAP information was neces-
sary because the lowest exposure levels were 
substantially higher than the counterfactual 

Figure 1. Predicted values of IER model (solid line) and 95% CIs (dashed line) and type-specific RRs 
(points) and 95% CIs (error bars) for IHD (A), stroke (B), COPD (C), and LC (D) mortality. Shaded boxes for 
COPD and LC mortality represent uncertainty (height) and exposure contrast (width) of RR HAP estimates 
for males (smaller boxes) and females (larger boxes) separately.
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exposure and, therefore, not directly compa-
rable to the RRs from the other sources. The 
pooled estimate of RR and its corresponding 
CI for SHS is displayed in placed of the study-
specific SHS RRs for each unique PM2.5 value 
because the study-specific RRs and CI could 
not be visually distinguished. Results are pre-
sented similarly for ALRI in Figure 2. In addi-
tion to the RR, the incidence of ALRI is also 
displayed on the right-hand y-axis.

The RRIER function fits well the RRs for 
all types of PM2.5 and causes of mortality, 
except for COPD and HAP, in which the 
IER model underestimates the observed RRs 
(Figure 1). This may be due to the use of the 
ratio of incidence rates rather than RR based 
on mortality data for this outcome. However, 
the IER curve fits the LC incidence data rea-
sonably well. The time between diagnosis of 
COPD and mortality is much longer than 

that for LC, and thus the LC incidence data 
may better reflect mortality patterns than the 
COPD incidence data.

We compared the country-specific esti-
mated PAFs using the age-modified models 
to those models using age-independent data. 
Age-modified RRIER curves are displayed for 
IHD and stroke mortality in Supplemental 
Material, Figure S15 (top panels), with gener-
ally decreasing risk with increasing age. The 
country-specific PAFs based on risk mod-
els not modified by age and those in which 
age-modification models were used for both 
IHD and stroke mortality are presented in 
Supplemental Material, Figure  S15 (bot-
tom panels). Incorporating age-modification 
risk models tends to slightly decrease the 
PAF estimates.

The distribution of population-weighted 
country-average PM2.5 concentrations and 
PAFs are displayed in Figure 3. The country 
average PM2.5 concentrations ranged from 
2–70 μg/m3 for 2005 (Figure 3A), whereas 
the country-level PAFs were < 0.4 for ALRI, 
IHD, and stroke and < 0.25 for LC and 0.2 
for COPD (Figure 3B).

Plots similar to Figures 1 and 2 are 
displayed for the other seven model forms 
examined in Supplemental  Material , 
Figures  S1–S14 for both the four causes 
of  death (Figures   S1–S7) and ALRI 
(Figures S8–S14). In addition, both the AICs 
and BICs are given in Supplemental Material, 
Table S2, for all eight models and five out-
comes. The IER model was a better predictor 
of the type-specific RRs than the other seven 
models examined for ALRI and three of the 

Figure 2. Predicted values of IER model (solid line) and 95% CIs (dashed line) and type-specific RRs 
(points) and 95% CIs (error bars) for ALRI in infants.
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four causes of death. For COPD mortality, 
the Power model provided a better fit than 
the IER model on the basis of lower AIC 
and BIC values (see Supplemental Material, 
Table S2). This was likely due to the better 
prediction of the HAP RR, for which the 
IER model clearly underestimated the RR. 
Graphical comparisons of the predicted val-
ues to the type-specific RRs in Supplemental 
Material, Figures S1–S14, verify the conclu-
sions drawn from the AIC/BIC results.

Discussion
Exposure to PM2.5 in ambient air has been 
linked to an increased risk of death from 
chronic cardiovascular and respiratory disease 
and LC in cohort studies in the United States 
and Europe (Chen et  al. 2008; U.S. EPA 
2009). Unfortunately, few long-term cohort 
studies have been reported for these diseases 
in other regions such as East and South Asia 
and the Middle East, where ambient expo-
sures are much higher and where the relative 
contribution of specific sources of air pollu-
tion differ from those in North America and 
Europe (Brauer et al. 2012; Heath Effects 
Institute 2010).

To derive the shape of the exposure–
response curve at higher ambient concentra-
tions, we incorporated information on risk 
due to exposure to SHS, HAP, and AS in 
order to extend the risk estimates to higher 
exposures. The IER model combines informa-
tion on mortality RR from separate types of 
combustion, unified by equating the deliv-
ered dose from all types in terms of equiva-
lent ambient PM2.5 exposures. Although we 
assumed that the toxicity of PM2.5 exposure, 
as characterized by RR, changes with the 
magnitude of exposure, we also assumed that 
at any fixed exposure level, toxicity is roughly 
equivalent among all types and temporal pat-
terns of PM2.5 exposure. These are impor-
tant assumptions because estimated PM2.5 
exposure throughout the world, whether from 
ambient origin or household indoor combus-
tion, has not been differentiated by the com-
ponents or sources of fine particulate matter.

Only evidence from multiple epidemio
logic studies of long-term exposure to 
PM2.5 in highly polluted settings can pro-
vide definitive estimates of the shape of the 
exposure–response function for mortal-
ity from chronic cardiovascular and respi-
ratory diseases. However, these are starting 
to appear. For example, Cao et al. (2011) 
reported an increased risk of mortality from 
cardiovascular and respiratory disease and LC 
associated with long-term exposure to total 
suspended particulates (TSPs) in 71,000 resi-
dents of 31 Chinese cities. Their study offers 
an opportunity to assess the ability of our 
RRIER model to estimate the observed RRs 
in situations with very high levels of outdoor 

air pollution. In order to estimate PM2.5 RRs 
in the cohort, the authors used a 3:1 ratio 
to convert TSP to PM2.5, based on current 
and historical Chinese data (Cao et al. 2011). 
Estimated PM2.5 (converted from TSP) 
concentrations ranged among cities from 38 
to 166 μg/m3. Increases of 2.1% (95% CI: 
–0.3%, 4.6%), 3.3% (95% CI: 0.9%, 5.4%), 
and 3.3% (95% CI: –0.3%, 6.9%) in IHD, 
stroke, and LC mortality, respectively, were 
associated with a 10-μg/m3 change in esti-
mated equivalent PM2.5 exposures in this 
cohort (Kan H, personal communication).

Because the cohort members did not 
experience exposures near the lowest con-
centrations applicable to our RR model 
(i.e., the counterfactual concentration), we 
cannot determine RRs estimated from the 
cohort and directly compare them to our 
RR model, which is relative to a much lower 
counterfactual concentration. However, 
we can determine RR between concentra-
tions observed in the cohort itself. We first 
determined the mean of the four quartiles 
of PM2.5 concentrations as 40, 91, 106, 
and 127 μg/m3, respectively (Kan H, per-
sonal communication) and calculated the 
RR between consecutive quartile averages 
assuming the exponential risk model form 
as was used by the study authors. The geo-
metric average of these three RRs was then 
determined as a summary measure of change 
in risk over the PM2.5 exposure distribu-
tion. A similar calculation was undertaken 
for the RRIER model. The RRs observed 
in the Chinese cohort and those predicted 
by RRIER were similar for the three causes 
of death examined [IHD: China RR = 1.06 
(95% CI: 0.99, 1.14) and IER RR = 1.05 
(95% CI: 1.03, 1.1); stroke: China RR = 1.10 
(95% CI: 1.03, 1.17) and IER RR = 1.08 
(95% CI: 1.01, 1.14; LC: China RR = 1.10 
(95% CI: 0.99, 1.22) and IER RR = 1.09 
(95% CI: 1.06, 1.12)], suggesting that our 
IER model yielded reasonable predictions in 
the change in risk over a range of concentra-
tions that prevail in China and other highly 
polluted settings that were not observed in 
cohort studies conducted in North America 
and Western Europe.

There are, however, some limitations in 
this comparison. First, TSP was a poorer pre-
dictor of cardiovascular mortality than PM2.5 
in U.S.-based cohort studies (Pope et  al. 
2002). Second, uncertainty about the tempo-
ral and spatial consistency of the TSP/PM2.5 
conversion ratio of 3:1 added uncertainty 
to our interpretation of the results from the 
Chinese cohort.

Additional uncertainties are due to a 
lack of information on actual exposure to 
PM2.5 for some source-specific RRs used 
to fit the model, notably a) scarce informa-
tion on actual exposure from SHS in the 

relevant epidemiologic studies (Pope et al. 
2009, 2011b), which required the estimation 
of PM2.5 concentrations from other studies; 
b) potential misclassification of exposure for 
SHS estimates due to possible co-exposure 
from AAP of the exposed group; and c) the 
duration of exposure, which differs when it 
comes to exposures from AAP, SHS, HAP, 
and AS—the lifetime duration of exposure 
in AS may be much shorter than in the other 
exposures and the received doses may, there-
fore, not be proportional to concentrations 
according to type of exposure. Uncertainties 
may be reduced by improving precision in the 
actual exposure estimates of the RRs from the 
epidemiologic literature used for developing 
the proposed model.

Multiple studies were used to estimate 
RRs associated with exposure to AAP, SHS, 
and HAP. For AS, we estimated RRs for active 
cigarette smokers from a single cohort, the 
CPS II. This cohort was also used in the GBD 
2010 project to estimate risk specifically for 
AS (Lim et al. 2012). However, the pattern 
of the association between the number of 
cigarettes smoked per day and cause-specific 
mortality observed in the CPS-II cohort may 
not reflect the patterns observed in other 
cohort studies of AS (e.g., Pirie et al. 2013). 
Similarly, the IER for ALRI is fit through 
RR from studies of AAP and SHS conducted 
in a limited number of mostly high-income 
countries, and a single developing country RR 
estimate for HAP PM2.5 exposure and ALRI 
(Smith et al. 2011). We thus recommend that 
future work on the IER function include addi-
tional sensitivity analyses of the type-specific 
RRs to which the curve is fit. Future work 
could also include the uncertainty in the esti-
mate of PM2.5 from CO and new information 
in this relationship (McCracken et al. 2013).

The key assumptions that underlie the 
IER, discussed above, largely serve to justify 
the integration of risk estimates for different 
types of PM exposure. These assumptions, 
and their tenability, have been addressed 
elsewhere (Pope et al. 2009, 2011a, 2011b). 
Unfortunately, for several of the most critical 
assumptions, those concerning the relative tox-
icity per unit mass of PM2.5 of different types 
(e.g., AAP and AS), not accounting for the 
temporal pattern of exposure, and the absence 
of interaction among types of combustion, 
there is little empirical evidence against which 
to evaluate those assumptions or to evaluate in 
detail specific implications of their violation. 
Each warrants additional research.

Although we set the counterfactual con-
centration to be drawn from a uniform distri-
bution with a lower bound of 5.8 μg/m3 and 
an upper bound of 8.8 μg/m3, we are not sug-
gesting that there is convincing evidence that 
PM2.5 mortality and ALRI risk is zero below 
any specific concentration based on biological 
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considerations (Brook et al. 2010). Absence 
of such evidence from epidemiologic studies 
does not necessarily imply evidence of the 
absence of such a counterfactual concentra-
tion. We thus take the conservative approach 
and set a positive counterfactual concentra-
tion. However, our approach can be adapted 
to a different counterfactual if new evidence 
supporting a positive association at lower con-
centrations becomes available. One such piece 
of evidence was observed in Canada, where 
positive associations as low as 2 μg/m3 were 
noted (Crouse et al. 2012).

The Lin50 and Log models proposed by 
Cohen et al. (2004) were used for the previ-
ous GBD estimates, and the Log model is 
currently recommended by the WHO (Ostro 
2004). However, the unknown parameters 
in these models were estimated from a sin-
gle cohort study of AAP, the CPS-II, which 
required analysis of the original data. The IER 
model uses RR estimates available in the open 
literature, allowing periodic updating of risk 
functions based on systematic review of the 
literature, and it does not require analyses 
of primary data not in the public domain. 
As new epidemiologic studies and evidence 
on type-specific PM2.5 exposure appear, the 
models can be reestimated by any interested 
member of the scientific community using 
publically available information.

Conclusion
Fine particulate mass–based RR models can 
be developed that cover the entire global range 
of ambient exposure to PM2.5 by integrating 
RR information from different combustion 
sources that generate emissions of particulate 
matter. The specific RR model form we iden-
tified in the present study can provide superior 
predictive power for leading global causes of 
mortality for air pollution compared with a 
range of alternative model forms.
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Erratum

Erratum: “An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine 
Particulate Matter Exposure”
In “An Integrated Risk Function for Estimating the Global Burden of Disease Attributable to Ambient Fine Particulate Matter Exposure” 
by Burnett et  al. [Environ Health Perspect 122:397–403 (2014);  http://dx.doi.org/10.1289/ehp.1307049], the authors omitted a 
reference. Balakrishnan et al. (2013) should have been cited in the first paragraph of “Methods” for HAP (household air pollutants). The 
correct sentence and reference are provided below.

The equivalent long-term PM2.5 exposure from HAP was estimated for study subjects using coal or biomass for cooking (Balakrishnan et al. 
2013) and for those study subjects using cleaner fuels to integrate this information into our IER risk model. 

Balakrishnan K, Ghosh S, Ganguli B, Sambandam S, Bruce NG, Barnes DF, et al. 2013. State and national household concentrations of PM2.5 from solid cookfuel use: results from 
measurements and modeling in India for estimation of the global burden of disease. Environ Health 12:77; doi:10.1186/1476-069X-12-77.

The authors regret the error.
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